Scientific resilience: How Italian nuclear physics changed after the Chernobyl disaster

Enrico Stivella

Bocconi University, Department of Economics enrico.stivella@phd.unibocconi.it

EDGE Jamboree, Dublin Sept, 19th 2024

What do you see?

Research Questions

1. How does human capital adapt to sectoral shocks?

2. Are scientific competences completely **sector-specific**?

3. Are scientists able to push the **scientific frontier** outside their main field?

This paper

- Exploits the 1986 Chernobyl disaster
 - Italy cut funds to nuclear research in 1987
- Studies the effects on academic publications
- Aims to estimate whether scientists were able to relocate to new fields

Preview of Results

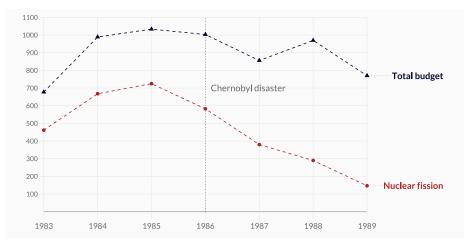
- Compared to non-defunded fields,
 - 50% decrease of papers published in fission
- For researchers who had already published in fission
 - 7% decrease in papers published in the following 15 years
 - 24% decrease in citations received in the following 15 years

Contribution to the Literature

- 1. **Economics of Science** (researchers' careers):
 - Waldinger (2010), Borjas and Doran (2012), Iaria, Schwarz, and Waldinger (2018), Azoulay, Zivin, and Wang (2010), Myers (2020), and Baruffaldi and Gaessler (2021)
 - · Nuclear scientists were not fully able to contribute to new fields
- 2. Labor (human capital specificity)
 - Becker (1962), Lazear (2009), Deming and Noray (2020), Chen (2021), and Aghion et al. (2022)
 - High-skilled workers' human capital exhibits a high degree of specificity
- 3. Innovation (spillovers from public research)
 - Moretti, Steinwender, and Van Reenen (2019), Bhattacharya (2021), Azoulay Graff Zivin, et al. (2019), Akcigit, Hanley, and Serrano-Velarde (2021), and Gross and Sampat (2020)
 - Failed projects do not generate positive spillovers

Contribution to the Literature

- 1. **Economics of Science** (researchers' careers):
 - Waldinger (2010), Borjas and Doran (2012), Iaria, Schwarz, and Waldinger (2018), Azoulay, Zivin, and Wang (2010), Myers (2020), and Baruffaldi and Gaessler (2021)
 - · Nuclear scientists were not fully able to contribute to new fields
- 2. Labor (human capital specificity):
 - Becker (1962), Lazear (2009), Deming and Noray (2020), Chen (2021), and Aghion et al. (2022)
 - High-skilled workers' human capital exhibits a high degree of specificity
- 3. Innovation (spillovers from public research)
 - Moretti, Steinwender, and Van Reenen (2019), Bhattacharya (2021), Azoulay Graff Zivin, et al. (2019), Akcigit, Hanley, and Serrano-Velarde (2021), and Gross and Sampat (2020)
 - Failed projects do not generate positive spillovers

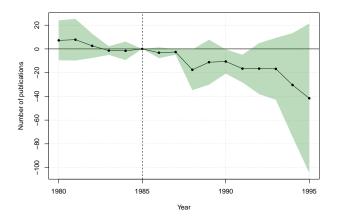

Contribution to the Literature

- 1. **Economics of Science** (researchers' careers):
 - Waldinger (2010), Borjas and Doran (2012), Iaria, Schwarz, and Waldinger (2018), Azoulay, Zivin, and Wang (2010), Myers (2020), and Baruffaldi and Gaessler (2021)
 - · Nuclear scientists were not fully able to contribute to new fields
- 2. Labor (human capital specificity):
 - Becker (1962), Lazear (2009), Deming and Noray (2020), Chen (2021), and Aghion et al. (2022)
 - High-skilled workers' human capital exhibits a high degree of specificity
- 3. Innovation (spillovers from public research):
 - Moretti, Steinwender, and Van Reenen (2019), Bhattacharya (2021), Azoulay, Graff Zivin, et al. (2019), Akcigit, Hanley, and Serrano-Velarde (2021), and Gross and Sampat (2020)
 - Failed projects do not generate positive spillovers

Data sources and sample

- Microsoft Academic Graph on scientific publications:
 - title
 - author names
 - author affiliations
 - publication year
 - field of studies
- Selected samples:
 - publications in nuclear physics in 1980-1995.
 - researchers active in nuclear physics pre-Chernobyl (years 1972-1985).
- Additional data source on nuclear research budget:
 - Decreto-legge n.151 (1989)

Defunding nuclear research: cuts to ENEA budget


Figures in bln liras. 1000 bln. liras in 1985 ≈ 1.28 bln euros in 2022

Comparing fission to non-affected fields

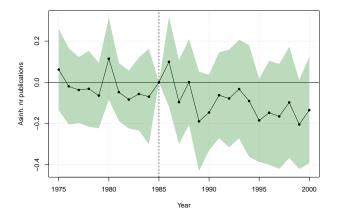
$$y_{ft} = \alpha + \beta Treat_f + \gamma Post_t + \delta Post_t \times Treat_f + \theta_t + \epsilon_{ft}$$

- yft: number of publications in year t, field f
- Treat_f: indicator for the treated field (fission)
- Control group is made of other fields of physics
- Post_t: indicator for Post-Chernobyl years
- θ_t : year-specific fixed effects

Fission publications fall by 50% in 10 years

Control group is made of publications in semiclassical physics, medical physics, engineering physics, theoretical physics and quantum mechanics.

Fission publications fall by 50% in 10 years

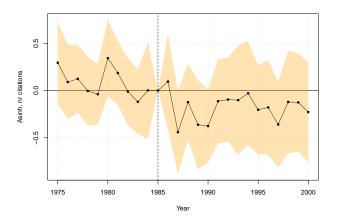

	Nr. of publications	Log nr. publications	Asinh nr. publications
	(1)	(2)	(3)
Post × Treat	-7.109*** (1.579)	-0.561** (0.259)	-0.604* (0.322)
Year F.E.	Yes	Yes	Yes
N R ²	32 0.920	32 0.906	32 0.902

Comparing scientists careers

$$y_{it} = \alpha_i + \delta Post_t \times Treat_i + \theta_t + \epsilon_{it}$$

- y_{it} : (log) number of publications (or citations) by author i in year t
- Treat_i: indicator for authors who had published in fission pre-1986
- Post_t: indicator for Post-Chernobyl years
- α_i : author-specific fixed effects
- θ_t : year-specific fixed effects

Fission scientists publications fall by 7% in 15 years



Control group is made of scientists who had published in semiclassical physics, medical physics, engineering physics, theoretical physics and quantum mechanics.

Fission scientists publications fall by 7% in 15 years

	Nr. publications (1)	Log nr. publications (2)	Asinh nr. publications (3)
$Post \times Treat$	-0.4460	-0.0661	-0.0809
	(0.1643)	(0.0554)	(0.0713)
R^2	0.50255	0.56955	0.56973
Observations	50,440	50,440	50,440
Author F.E.	\checkmark	✓	\checkmark
Year F.E.	\checkmark	\checkmark	\checkmark

Fission scientists citations fall by 24% in 15 years

Control group is made of scientists who had published in semiclassical physics, medical physics, engineering physics, theoretical physics and quantum mechanics.

Fission scientists citations fall by 24% in 15 years

	Nr. citations (1)	Log nr. citations (2)	Asinh nr. citations (3)
Post × Treat	-19.85	-0.2348	-0.2626
	(3.457)	(0.1316)	(0.1547)
R ²	0.27507	0.53915	0.53835
Observations	50,440	50,440	50,440
Author F.E.	√	√	√ ✓
Year F.E.	√	√	

Conclusions and discussion

Findings

- Sizable loss of scientific production after defunding
- Italian nuclear scientists did not successfully relocate

Limitations

- Small sample size
- No budgetary data to measure elasticity of science w.r.t to fundings
- No clear measure for transition to new fields

What's next?

- Enlarge sample size: add fields that cite the ones that I selected
- Use ML algorithms to define an index of field similarity
- Define transition to new fields accordingly
- Check for heterogeneous effects
- Explore different control groups